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Formal education has a long-term impact on an individual’s life.
However, our knowledge of the effect of a specific lack of educa-
tion, such as in mathematics, is currently poor but is highly rele-
vant given the extant differences between countries in their
educational curricula and the differences in opportunities to access
education. Here we examined whether neurotransmitter concen-
trations in the adolescent brain could classify whether a student is
lacking mathematical education. Decreased γ-aminobutyric acid
(GABA) concentration within the middle frontal gyrus (MFG) suc-
cessfully classified whether an adolescent studies math and was
negatively associated with frontoparietal connectivity. In a second
experiment, we uncovered that our findings were not due to pre-
existing differences before a mathematical education ceased. Fur-
thermore, we showed that MFG GABA not only classifies whether
an adolescent is studying math or not, but it also predicts the
changes in mathematical reasoning ∼19 mo later. The present re-
sults extend previous work in animals that has emphasized the
role of GABA neurotransmission in synaptic and network plasticity
and highlight the effect of a specific lack of education on MFG
GABA concentration and learning-dependent plasticity. Our find-
ings reveal the reciprocal effect between brain development and
education and demonstrate the negative consequences of a spe-
cific lack of education during adolescence on brain plasticity and
cognitive functions.
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Educational decisions have a long-lasting impact on both the
individual and wider society (1). Mathematical education and

attainment has been associated with several quality-of-life indices,
including educational progress, socioeconomic status, employ-
ment, mental and physical health, and financial stability (2–5). In
several countries, such as the United Kingdom and India, 16-y-old
adolescents as part of their advanced (i.e., A-level) subjects can
choose to stop studying math. The consequences of not choosing
math as an A-level subject can be significant. When controlling for
potential confounding factors such as socioeconomic status it
emerged that the decision to not study math as an A-level subject
can lead to an 11% decrease in financial income compared to
those who choose to study math as part of their A-level curricu-
lum. No other A-level subject category is associated with such a
wage premium (6). In addition, previous studies highlighted the
cognitive, emotional, and societal factors that are associated with
mathematical education (7, 8).
In recent years, there has been significant interest in the in-

vestigation of the neural substrates of mathematical cognition and
education, and frontal and parietal regions have been repeatedly
highlighted as key regions (9–13). Despite the advancement of our
knowledge on the neurobiological underpinnings of math abilities,
little is known about whether and how they are involved in a lack
of mathematical education. At the neurobiological level, the lack
of math education could impact neural changes in regions that are
involved in skill acquisition of math, primarily in frontoparietal
regions (“plasticity account”). This process can be subserved by
neurotransmitter concentrations that preceded anatomic changes

(14). However, such differences may exist before the continuation
of math education and represent baseline differences at the time
of the educational decision not to study vs. to study further math
(“biomarker account”).
Using single H-magnetic resonance spectroscopy (MRS), we

scanned two previously defined key regions involved in numeracy:
the intraparietal sulcus (IPS) and the middle frontal gyrus (MFG)
(Fig. 1). We also examined their functional connectivity using
resting-state functional MRI (for reviews see refs. 15–19). Such an
approach allowed us to examine the role of γ-aminobutyric acid
(GABA) and glutamate, the brain major inhibitory and excitatory
neurotransmitters, respectively. Brain inhibition and excitation
levels are thought to be critical in triggering the onset and defining
the duration of sensitive periods of a given function, during which
the neural system is particularly plastic in its response to envi-
ronmental stimulation (20). It is thought that this is achieved by a
shift in the ratio of intrinsic and spontaneous activity and activity
in response to the environmental stimulation, whereby the in-
trinsic and spontaneous activity is reduced and the activity in re-
sponse to the environmental stimulation is increased (21).
Although very early in development, GABA functions as an ex-
citatory neurotransmitter (22), during adolescence GABA and
glutamate function as the main inhibitory and excitatory neuro-
transmitters, respectively, and previous studies have shed some
light on the actions of these two neurotransmitters during ado-
lescence. For example, compared to early childhood where there
is a peak synaptic density, but the synaptic density is significantly
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reduced during adolescence (even more so compared to adult-
hood) and such synaptic pruning is thought to be underpinned by
glutamatergic-mediated synaptic mechanisms of long-term po-
tentiation and depression (23). Moreover, previous studies have
shown that GABA matures during adolescence, and frontal lobe
GABA receptors reach adult levels late in adolescence with lower
GABA levels being associated with poor cognitive functioning
during adolescence (24, 25).
In the present study, rather than examining a general lack of

academic education, which could stem from several confounding
factors (e.g., socioeconomic status, lack of learning materials,
insufficient educational infrastructure, cultural differences), we
specifically examined the lack of math education. As mentioned
earlier, in the United Kingdom, 16-y-old adolescents can choose
to cease their mathematical education while still being enrolled
in other nonmathematical academic education. This allowed us
to better control for these confounds by recruiting participants
from similar educational systems who differ specifically in their
math education.
Based on the existing literature reviewed previously, we hy-

pothesized that the lack of mathematical education would be
associated with reduced GABA and/or increased glutamate.
While both left and right frontoparietal regions were shown to
underpin numerical processing (13, 26, 27) in the present study,
we focused on the left frontoparietal regions due to their central
role in mathematical learning (28–31). Our decision to a priori
select the left IPS and MFG was based on the following reasons:
First, the left IPS and MFG are frequently reported in neuro-
imaging studies that examined arithmetic, including a meta-
analysis (10). Second, previous studies in the field of numerical
cognition have shown the involvement of those brain regions in
cognitive training (32–34). Third, brain stimulation studies have

suggested a causal role of the MFG in algorithmic learning and
the IPS in learning concerning more low-level computation
(numerosity, symbolic representation) (30, 35, 36). Using clas-
sification approaches, we discerned the differences in these
neurotransmitters in adolescents who lack further math educa-
tion (A-level nonmathematics) vs. those who underwent further
math education (A-level mathematics). To dissociate the plas-
ticity account from the biomarker account, we examined in a
second experiment an independent cohort of students who made
the same decision but who had not yet started their A level. Such
a design allowed us to understand the exact role of frontoparietal
GABA and glutamate, the main determinants of neuroplasticity
and cognitive functions, during this critical developmental and
educational stage.

Results
Contrasting Nonmath vs. Math Students. In line with previous studies
(7, 8, 37), we identified that those who ceased to study A-level
mathematics, compared to those who continued to study A-level
mathematics, showed lower performance in tests involving nu-
merical operations [Fig. 2A, t (84) = −5.27, P < 0.001, Cohen’s
d = −1.18] and mathematical reasoning [Fig. 2B, t (83) = −4.61,
P < 0.001, Cohen’s d = −0.99], but scored higher on a test that
assessed math anxiety [Fig. 2C, t (84) = 3.3, P = 0.001, Cohen’s d =
0.71]. For the descriptive statistics of these cognitive and emo-
tional differences, see SI Appendix 1.
We then used GABA and glutamate concentrations in the

MFG and IPS to classify students based on their present lack of
math education (nonmath students vs. A-level math) using a
binary logistic regression. Lower MFG GABA concentrations
increased the likelihood that a student lacked math education
rather than continued their math education [Fig. 2D, n = 83,

Fig. 1. Positions of the volumes of interest displayed in a representative T1-weighted image for the (A) IPS and (B) MFG, on axial and sagittal slices, re-
spectively. Average spectra from each of these regions are shown below (thickness corresponds to ±1 SD from the mean) (chemical shift expressed in parts per
million, ppm, on the x axis).
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standardized beta(β) = −0.3, P = 0.009, Exp(pβ) = 0.524,
Exp(β) = 0.742]. This finding survived multiple comparisons
[Benjamini–Hochberg adjusted P = 0.037, based on the two re-
gions of interest (IPS/MFG) × two neurochemicals (GABA/
glutamate)].
To examine whether GABA’s role is regionally and neuro-

chemically specific in classifying the lack of a present math educa-
tion, we ran a binary logistic regression with the predictors of MFG
GABA [n = 82, β = −0.31, P = 0.007, Exp(pβ) = 0.49, Exp(β) =
0.74], MFG glutamate [n = 82, β = −0.01, P = 0.9, Exp(pβ) = 0.97,
Exp(β) = 0.99], and IPS GABA [n = 82, β = 0.14, P = 0.19,
Exp(pβ) = 1.39, Exp(β) = 1.15]. As the results indicate, only the
MFG GABA predictor was significant. These results allowed us to
conclude that our finding is regionally and neurochemically specific.
To examine whether the contribution of MFG GABA is con-

founded by math ability or math anxiety, we ran a binary logistic
regression classifying whether a student lacks math education
based on numerical operations [n = 80, β = −0.3, P = 0.023,
Exp(pβ) = 0.38, Exp(β) = 0.74], mathematical reasoning [n = 80,
β = −0.24, P = 0.074, Exp(pβ) = 0.47 Exp(β) = 0.79], and math
anxiety [n = 80, β = 0.12, P = 0.26, Exp(pβ) = 1.46, Exp(β) = 1.13],
and MFG GABA [n = 80, β = −0.23, P = 0.023, Exp(pβ) = 0.48,
Exp(β) = 0.79]. These findings support the notion that math ability
measures, but not math anxiety, successfully classify whether an
adolescent lacks a math education program. More importantly,
the findings highlight the contribution of MFG GABA in classi-
fying whether an adolescent does not study math above and be-
yond the other aforementioned common determinants. Further
analyses examined the effect of potential confounds. First, we
excluded the role of gender in the observed results (SI Appendix
2). Second, we revealed that students who lack vs. those who did
not lack math did not differ in their A-level education duration,
age at scanning, and matrix reasoning (SI Appendix 3), and that
MFG GABA successfully classified those students who lack math
education even after controlling for the total number of enrolled
A-level subjects (SI Appendix 3). Third, MFG GABA successfully
classified students who lack math education at this age, even after
controlling for the choice of biology, chemistry, and physics, while
it failed to classify students who lack a physics, biology, or
chemistry education at the same developmental stage.

Furthermore, we employed resting fMRI to investigate
whether the lack of math education is associated with the func-
tional connectivity between the left MFG, the region in which
the main neurochemical finding was obtained, and the rest of the
brain, using a seed-to-voxel method (Materials and Methods).
However, no significant clusters were obtained, even after
lowering the threshold to that of a liberal one (voxel-wise
P value = 0.01).
We then employed resting fMRI to investigate whether MFG

GABA concentration regulates functional connectivity between
the left MFG and the rest of the brain (Materials and Methods).
The identified associations with the MFG GABA and the
functional connectivity with this region were restricted to the
parietal cortex and included three clusters: the right supra-
marginal gyrus (Fig. 3A, x = 56, y = −22, z = 48, k = 300 voxels,
positive false discovery rate [pFDR] = 0.016) and the bilateral
superior parietal lobules (Fig. 3A, x = 30, y = −46, z = 60, k = 231
voxels, pFDR = 0.024; Fig. 3B, x = −26, y = −42, z = 68, k = 199
voxels, pFDR = 0.028). In all of these cases, higher MFG GABA
concentrations were associated with negative connectivity, while
low MFG GABA concentrations were associated with positive
connectivity (Fig. 3 C–E).

Dissociating the Plasticity and Biomarker Accounts.At this stage, the
relation between MFG GABA concentrations and math educa-
tion might reflect baseline differences before studying A-level
math. Such baseline differences, for example, might reflect dif-
ferences in cortical maturation (20), which could prove to be ad-
vantageous when studying math, and thus impacting the likelihood
of continuing their math education. To investigate this possibility,
we examined a new cohort who had already decided whether they
would stop studying math as part of their A-level curriculum but
were at that time engaged in math education (pre-A level).
Pre-A-level students who had chosen to stop studying math

compared to those who had decided to continue studying math
show lower performance on tests that included numerical opera-
tions [t (40) = −5.03, P < 0.001, Cohen’s d = −1.67] and mathe-
matical reasoning [t (40) = −4.1, P = 0.001, Cohen’s d = −1.37].
However, the difference between both groups in terms of math
anxiety was not significant [t (40) = 0.91, P = 0.4, Cohen’s d = 0.28].

Fig. 2. Behavioral performance and GABA-based classification of whether a student is currently lacking math education. Behavioral results showing worse
performance for adolescents who did not study math compared to those who did study math on (A) numerical operation attainment test and (B) mathe-
matical reasoning attainment test. (C) Those who did not study math scored higher on a test that assessed math anxiety. Error bars represent 95% confidence
intervals. (D) MFG GABA classified math education; predicted probabilities of those currently lacking math education (y axis) plotted against MFG GABA
concentrations (x axis).
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For the descriptive statistics of these cognitive and emotional dif-
ferences, see SI Appendix 1. The biomarker account did not receive
support as the classification of the nonmath vs. math educational
decision before starting to study math based on MFG GABA was
not significant [n = 36, β = 0.14, P = 0.42, Exp(pβ) = 1.33, Exp(β) =
1.14]; for further analysis to exclude potential artifacts see
SI Appendix 4.

MFG GABA Predicts Future Mathematical Ability. The plasticity ac-
count posits that the decreased MFG GABA concentration may
reflect a lack of an advanced math education, which would oth-
erwise benefit better math acquisition. Taking the results of the
two preceding sections together, a corollary from the plasticity
account is that the MFG GABA concentration will predict future
math attainment. To test this hypothesis, we asked the students to
complete the standardized numerical operations and mathemati-
cal reasoning tests 19.37 mo (SD = 3.94) after we acquired their
MFG GABA concentration. Using regression analysis, we assessed
whether MFG GABA in the A-level students could predict future
math attainment while controlling for math attainment when the
MFG GABA was acquired. We also controlled for other con-
founding factors (age during neuroimaging and behavioral data
acquisition [T1], age during the second testing [T2], and group
[lacking vs. not lacking math education]). The numerical op-
erations score at T2 was predicted by numerical operations at
T1 [β = 0.51, t (33) = 4.1, P < 0.001] and by math group
[β = −0.43, t (33) = −3.63, P = 0.0005, a directional hypothesis
based on our results at T1], but not by MFGGABA concentration
[β = 0.06, t (33) = 0.59, P = 0.56]. The mathematical reasoning

score at T2 was predicted by mathematical reasoning at T1 [β =
0.61, t (33) = 5.85, P < 0.001], and there was a trend with the
factor group [β = −0.16, t (33) = −1.52, P = 0.068, a directional
hypothesis based on our results from T1]. Most notably, the MFG
GABA concentration at T1 was a significant predictor of the
mathematical reasoning 19 mo later [Fig. 3F, β = 0.25, t (33) =
2.59, P = 0.014, Benjamini–Hochberg adjusted P = 0.028, based
on two comparisons, i.e., numerical operations and mathematical
reasoning]. See SI Appendix 5 for further analysis.

Discussion
In the present study, we examined the impact of the lack of math
education on brain development and future attainment. Using
MRS, we scanned the left MFG and IPS, two previously defined
key regions involved in numeracy, and observed three main find-
ings: 1) adolescents who lack math education exhibited a decrease
in GABA levels within the MFG compared to those who receive
math education; 2) these differences were not present when de-
ciding to cease math education, but before this action took place;
and 3) MFG GABA levels predicted future mathematical rea-
soning when our sample was reassessed ∼19 mo apart.
We found that MFG GABA concentration could classify

whether A-level students are presently lacking math education.
Low MFG GABA concentrations increase the likelihood of not
undergoing math education as a result of not choosing math as
one of one’s A-level subjects. Notably, this finding was specific to
math education and was not explained by other A-level subjects
that are usually taken by those who are enrolled in math education
such as biology, chemistry, and physics, or by the number of

Fig. 3. MFG GABA is associated with frontoparietal functional connectivity and predicts future math performance. Regions negatively connected to left MFG
as a function of MFG GABA concentration included (A) the right supramarginal gyrus and the right superior parietal lobule and (B) the left superior parietal
lobule. Scatterplots depict the negative associations between MFG GABA concentration and MFG-based brain connectivity in three parietal clusters: (C) left
MFG–right supramarginal gyrus, (D) left MFG–right superior parietal lobule, and (E) left MFG–left superior parietal lobule. Dotted vertical lines in C–E cor-
respond to the zero-connectivity point. (F) MFG GABA concentration predicted future mathematical reasoning after controlling for mathematical reasoning
scores when MFG GABA concentration was acquired ∼19 mo before. We plotted the residuals on the y axis and x axis after controlling the variance of the
other predictors in the regression model described in the text.
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A-level subjects studied by the individuals (SI Appendix 3). GABA
and glutamate within the IPS and glutamate within the MFG were
not successful classifiers, and in further analyses, we showed that
our results are specific to GABA and the MFG. Moreover, while
we demonstrated that relevant cognitive and emotional factors,
namely, math ability and math anxiety, differ between A-level
students who lack vs. A-level students who do not lack math ed-
ucation, similar to previous studies (7, 8, 37), MFG GABA could
still successfully classify whether A-level students lack math edu-
cation even when we took into account the variance explained by
these behavioral measures.
The neurochemical concentration within the MFG, but not

within the IPS (a key region in numerical cognition), successfully
classifies whether A-level students lack math education. The
parietal cortex plays a crucial role in low-level computation,
symbolic and nonsymbolic representation, and automatic exe-
cution after extensive practice (e.g., fact retrieval), whereas the
prefrontal cortex is involved in more complex computations and
algorithmic processing (36, 38–40), and it supports the allocation
of mental resources during cognitive learning before automatic
execution is reached (41). Such a distinction could explain our
results, as A-level math students were involved in further
mathematical education, which requires ongoing complex com-
putation and algorithmic processing rather than low-level com-
putation or automatization. While we acknowledge that the IPS
is also found in some studies that examined the neural correlates
of complex computation and algorithmic processing (26, 28, 42,
43), these findings do not provide causal evidence for the role of
the IPS in the learning of these processes. A support for our
suggestion is coming from brain stimulation studies over the
MFG or IPS during a 5-d arithmetic learning, which found im-
proved arithmetic learning and hemodynamic changes in the left
MFG, but not the IPS (30). Furthermore, other brain stimulation
studies have highlighted the role of the IPS in numerosity
training and automatization, which requires low-level computa-
tion (35, 36, 40, 44). However, our current explanation for the
lack of IPS involvement in A-level mathematical learning is
based on a null result, and could have originated as a result of
other factors. For example, the involvement of different brain
regions, such as the MFG and IPS, in mathematical learning
might depend on the exact stage of development (29, 45–47).
By further examining whether MFG GABA concentration

could classify the decision to choose advanced math education
before being enrolled in the A-level program, we inferred that
MFG GABA concentrations reflect a lack of further math ed-
ucation during adolescence, rather than the likelihood of the
student choosing A-level math. Our conclusions are in line with
previous studies that linked GABA to cognitive performance
(48) and plasticity (49–51) and the role of the frontal cortex
functions in high-level cognition (52–56), including cognitive
learning (41). An additional support to our proposal that GABA
concentration in the MFG reflects neural priming for better skill
acquisition of math is our ability to predict future mathematical
reasoning in a standardized mathematical attainment test using
MFG GABA concentration values that we obtained ∼19 mo
earlier. This result is supported by previous neuropsychological
and functional MRI studies that have highlighted the role of the
left MFG in reasoning and problem solving (57–59) (for the
overlapped Montreal Neurological Institute [MNI] coordinates
between the left MFG in our study and previous fMRI studies,
see SI Appendix 5).
MFG GABA predicted future mathematical reasoning but not

numerical operations. The numerical operations used in stan-
dardized tests, as in our testing battery, mainly emphasize the
implementation of arithmetical procedure and the retrieval of
arithmetic facts; the latter is mastered by students and is acquired
in earlier years (60, 61) therefore leading to less room for future
improvement. In contrast, mathematical reasoning emphasizes

problem-solving abilities, which is a more malleable set of skills.
Indeed, in our sample mathematical reasoning, but not numerical
operations, significantly improved at T2 compared to T1 [math-
ematical reasoning: t (42) = 4.3, P < 0.001; numerical operations:
t (42) = 0.52, P = 0.6]. Consequently, we tentatively suggest that
the predictive capacity of MFG GABA becomes more relevant for
skills that are more susceptible to change and plasticity rather than
numerical operations, a more basic skill, which reached the level
of proficiency in both groups.
What do these education-related GABA level differences re-

flect at the cellular level, and how may these differences affect
plasticity? The learning of math is an evolving skill that is accu-
mulated and refined over years, suggesting that its underlying
sensitive period or plasticity extends beyond childhood and ado-
lescence. Critically, however, sensitive periods for developing a
skill are not an on/off process but are rather known to be plastic in
terms of their onset, closure, duration, and intensity (20). Such
plasticity mechanisms are thought to involve the maturation of
parvalbumin cells, a positive subtype of GABA neurons (62),
leading to an optimal excitation/inhibition ratio underlying plas-
ticity and corresponding learning (20, 63–65). Notably, the par-
valbumin cells account for 25% of GABAergic cells in the primate
dorsolateral prefrontal cortex (66, 67). Therefore, a potential
mechanistic explanation for our results is that the elevated GABA
observed in the group that received math education vs. those who
lack it reflect the maturation of parvalbumin cells. Moreover, in-
dividual variation in these prefrontal GABA levels predicted fu-
ture mathematical reasoning, thus suggesting that the elevated
GABA levels observed in the group that received an enhanced
math education likely shifted the GABA prefrontal circuits from
static to more plastic ones perhaps by increasing the amplitude or
duration of plasticity (20). Subsequently, our findings propose
testable hypotheses linking learning mechanisms from animal
models described at the microcircuits profile to the lack of math
education and corresponding math learning and underlie the
macroscopic learning-dependent plasticity.
Work in animals has highlighted the role of GABA neuro-

transmission in neuronal coding and processing as it influences
membrane potential, neuronal activity, and synaptic and network
plasticity (49–51, 68, 69). Given this effect of GABA on neural
networks, our study additionally examined whether individual
variation in MFG GABA concentration is associated with the
functional connectivity between the MFG and the rest of the
brain. Our analyses revealed three parietal regions whose con-
nectivity to the MFG was negatively associated with the amount
of GABA concentration: the right supramarginal gyrus and the
right and left superior parietal lobules. In all of these cases, high
MFG GABA concentrations were associated with negative
connectivity. These frontal and parietal regions have been re-
peatedly highlighted as structures involved in numerical cogni-
tion in both children and adults (9, 13), and we demonstrate here
that such functional connectivities are linked to MFG GABA
concentration during adolescence. Previous work discovered a
negative association between regional GABA levels and resting-
state brain connectivity (70, 71); for example, work in adults
focused on the motor system found a negative association be-
tween GABA within the M1 and the connectivity strength of the
motor network (72). Here, we found that higher frontal GABA
concentration is related to negative frontoparietal connectivity.
These results suggest that in adolescence, individuals with high
MFG GABA levels exhibit increased negative associations be-
tween frontoparietal regions compared to individuals with low
MFG GABA levels who exhibit increased positive associations.
Since GABAergic interneurons are thought to coordinate the
synchrony of neural circuits (71, 73, 74), a likely explanation at the
neurobiological level is that regional GABA concentrations may
determine the synchronicity valance of that region with other
functionally connected regions, in this case, the frontoparietal
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network during adolescence. However, how GABA concentra-
tions might impact the organization of neural networks during
development remains unclear. One possibility is that the negative
connectivity facilitates the allocation of more resources to the
prefrontal regions due to their primary role in cognitive learning
(41). Nonetheless, our data provide strong motivation to clarify
the exact role of GABA in shaping the development of neural
networks and to examine its potential causal effect, which could
have implications for future brain-based interventions (75).
MRS-based neurochemicals like GABA or glutamate have

been extensively examined in relation to their associations with
laboratory-based tasks (47, 56, 63, 76–82). Moreover, MRS has
been highlighted as a promising tool in the classification and
prediction of brain-related diseases by focusing on neurochemical
concentrations that preceded anatomic changes (14). Our findings
extend the unique contribution of MRS from basic research and
clinical applications to educational settings to gain insight into the
effect of a specific lack of math education. From a societal per-
spective, this is highly relevant given differences between countries
in their educational curricula. For example, in some countries,
adolescents can stop their math education at the age of 16, while
in other countries math is mandatory. We show that within a so-
ciety such decisions can alter neural and cognitive development.
This, in turn, can introduce an advantage to individuals and so-
cieties who introduced math education as mandatory until school
graduation. In addition, one might further consider how the dif-
ferences in opportunities to access education, as reflected espe-
cially during the Covid-19 pandemic, might impact neural and
cognitive development.
In summary, our work highlights the role of a specific neuro-

chemical, GABA, in education during adolescence, its association
with brain connectivity, and its capacity to predict future math
ability. These results raise further questions, such as the impact of
MFG GABA differences on other cognitive abilities associated
with math education, such as working memory and logic (43, 83,
84), whether mathematical education should be mandatory during
adolescence, and whether ceasing to pursue mathematical edu-
cation should be replaced with nonmath materials, such as rea-
soning and logic, to allow ongoing engagement of the MFG that
has been implicated in such cognitive processes (59). A more in-
tegrative understanding of the role of neurochemicals in behavior
and their potential impact on brain structures and neural activity
could lead to better tools for improving education and under-
standing brain development and cognition.

Materials and Methods
Participants. In experiment 1, we tested 87 A-level students {56 females, mean
age in months = 202.7, SD = 4.7, range = [193 (16.1 y), 216 (18 y)]}. In the United
Kingdom, A level is an advanced level subject-based qualification that can lead
to university, further study, training, or work. In experiment 2, we tested 42
pre-A-level students {21 females, mean age in months = 172.31, SD = 3.71,
range = [164 (13.7), 182 (14.92)]}. This group comprised prospective A-level
students who indicated their decision of whether they would study math as
part of their A-level curriculum. All participants completed two separate ses-
sions; an imaging session that lasted ∼60 min and a mathematical assessment
session that lasted ∼60 min. During the structural imaging and the MRS ac-
quisition, participants merely watched the LEGO movie (85), and during the
resting fMRI participants were asked to fixate on a white cross on a black
background. All participants were predominantly right-handed, as measured by
the Edinburgh Handedness Inventory (86). Exclusion criteria were any current or
past neurological, psychiatric, or learning disability or condition that might
affect cognitive or brain functioning; these were confirmed via self-report. As
compensation, participants received a £35 Amazon or iTunes voucher.

The study was approved by the University of Oxford Medical Sciences
Interdivisional Research Ethics Committee. Upon arrival on the scanning or
behavioral site, and after being informed about the study’s aims and pro-
cedures, all participants above 16 y of age or the participants’ parents/
guardians if the children were below 16 y of age, were asked to complete
the relevant consent form. In addition to the consent form completed by the
parent/guardian, children below 16 y of age were given an age-appropriate

assent form. This form included several statements such as “I have read the
study information sheet and I had the opportunity to consider the infor-
mation, ask questions and have had these answered satisfactorily.” The
children were asked to put their initials next to each statement if they
agreed and signed the form.

Outliers were defined as cases with a score of three SDs beyond the mean
(in the brain or behavioral measures, and in the residuals in the regression
model), and were excluded from the analysis. Cases with missing scores were
excluded from a given analysis only if the variables involved featured missing
scores/excluded cases (SI Appendix 6).

The behavioral test at T2 after the neuroimaging data acquisition and be-
havioral testing was run on 39 participants. This attrition rate was due to the
inability of the participants to return for testing asmost of themhad graduated
and moved away from the testing location to pursue a university degree.

Math Group. The math group, the single dependent variable of this work, was
coded as a dichotomous variable (1: math group vs. 0: nonmath group). In the
A-level cohort, the math group consisted of students engaged in A-level math
(n = 49), while the nonmath group consisted of students who were not en-
gaged in A-level math (n = 38). In the pre-A-level cohort, the math group was
composed of students who indicated their willingness to study math as one of
their A-level subjects (n = 21) or to avoid such a subject (n = 21). The partici-
pants confirmed at a later date that they had taken such a decision.

MRI Data Acquisition and Preprocessing. All MRI data were acquired at the
OxfordCentre for FunctionalMRIof theBrain (FMRIB)ona3TSiemensMAGNETOM
Prisma MRI System equipped with a 32-channel receive-only head coil.

Structural MRI. Anatomical high-resolution T1-weighted scans were acquired
using an MPRAGE sequence consisting of 192 slices (repetition time [TR] =
1,900 ms; echo time [TE] = 3.97 ms; voxel size = 1 × 1 × 1 mm).

Magnetic Resonance Spectroscopy. Spectra were measured by semiadiabatic
localization using an adiabatic selective refocusing (semi-LASER) sequence (TE=
32ms; TR = 3.5 s; 32 averages) (87, 88) and variable power radio frequency (RF)
pulses with optimized relaxation delays (VAPOR), water suppression, and
outer volume saturation. Unsuppressed water spectra acquired from the same
volume of interest were used to remove residual eddy current effects and to
reconstruct the phased array spectra with MRspa (https://www.cmrr.umn.edu/
downloads/mrspa/). Two 20 × 20 × 20 mm3 voxels of interest were manually
centered in the left IPS and the MFG based on the individual’s T1-weighted
image while the participant was lying down in the MR scanner. Acquisition
time per voxel was 10 to 15 min, including sequence planning and shimming.

MRS neurotransmitters were quantified with an LCModel (89) using a basis
set of simulated spectra generated based on previously reported chemical
shifts and coupling constants based on a VeSPA (versatile simulation, pulses,
and analysis) simulation library (90). Simulations were performed using the
same RF pulses and sequence timings as in the aforementioned 3T system.
Eight LCModel-simulated macromolecule resonances were included in the
analysis at the following positions: 0.91, 1.21, 1.43, 1.67, 1.95, 2.08, 2.25, and
3 ppm (91). Absolute neurochemical concentrations were extracted from the
spectra using a water signal as an internal concentration reference.

The exclusion criteria for the data were 1) Cramér–Rao bounds and 2) the
signal-to-noise ratio (SNR) (92). Neurochemicals quantified with Cramér–Rao
lower bounds (CRLB, the estimated error of the neurochemical quantifica-
tion) >50%were classified as undetected. Additionally, we excluded cases with
an SNR ranging beyond 3 SDs (per region, per neurochemical, per age group),
and cases with a neurochemical score beyond 3 SDs, as mentioned previously.

Absolute neurochemical concentrations were then scaled based on the
structural properties of the selected regions and on the predefined values
shown in Eq. 1 (89); these predefined scaling values were therefore deter-
mined prior to data collection. To quantify the structural properties, we
segmented the images into different tissue classes including gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) using the SPM12
segmentation facility. Next, we calculated the number of GM, WM, and CSF
voxels within the two masks of interest separately around the left IPS and
MFG in their native space. Subsequently, we divided these six numbers (GM,
WM, and CSF for IPS and MFG) by the total number of GM, WM, and CSF
voxels to obtain the corresponding GM, WM, and CSF fraction values per
participant and region. As a final computation step, we scaled the absolute
neurotransmitter values to these structural fractions using the following
LCModel (89) computation:
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Tissue corrected concentration = [(43,300=55,556 × GM fraction
+ 35,880=55,556 ×WM fraction + 1
× CSF fraction)=(1 − CSF fraction)]
× absolute neurochemical concentration.

[1]

We additionally calculated the relative neurotransmitter concentration,
which was calculated as the absolute neurotransmitter concentration divided
by the concentration of total creatine, where tCr = creatine and phospho-
creatine concentration. The neurotransmitter concentrations were refer-
enced to total creatine since 1) creatine is commonly used as a reference and
widely accepted as an internal reference standard; and 2) its signal shares
the same imperfections (e.g., frequency drift, phase drift, and subject motion) as
the signal of GABA and glutamate, as all concentrations are acquired simulta-
neously (47). We obtained similar results when we scaled GABA and glutamate
to creatine and phosphocreatine (tCr, a relative concentration measure).

Resting fMRI. Functional images were acquired with a multiband acquisition
sequence (multiband acceleration factor = 6; TR = 933 ms; TE = 33.40 ms; flip
angle 64°; number of slices = 72; voxel dimension = 2 × 2 × 2; number of
volumes = 380). Resting fMRI data were preprocessed and analyzed using the
CONN toolbox (http://www.nitrc.org/projects/conn, RRID:SCR_009550) (93) in
SPM12 (Wellcome Department of Imaging Neuroscience, Institute of Neurol-
ogy, London, UK) and the default MNI-space direct normalization pre-
processing pipeline. Functional volumes were motion corrected, slice-time
corrected, segmented, normalized to a standardized (MNI) template, and
spatially smoothed with a Gaussian kernel (8 mm full width at half maximum
[FWHM]) and bandpass filter (0.01 Hz to infinity). Moreover, our preprocessing
also involved outlier identification (>2 mm) and denoising where the default
options were used. We excluded cases where 1) the outlier-identification step
excluded more than 5% of the scans, and/or 2) the voxel-to-voxel correlation
histogram was significantly nonzero (r > 0.15). To examine the effect of the
math group, or the effect of neurochemical concentrations, on the brain
network level, we employed seed-to-voxel analyses. Due to the findings (see
Results), our seed was the left MFG. For testing significance, we utilized an
initial voxel-wise uncorrected threshold P < 0.001 and a cluster-level FDR
corrected to P < 0.05, which are also the default values of the CONN toolbox.

Behavioral Tests. We additionally assessed math ability and anxiety because
these are common determinants of the decision to study A-level math (7, 37).
The inclusion of these behavioral measures allowed us to examine whether
our neural markers could explain the A-level math decision and advanced
math learning over and above these common determinants (7, 8).

Math Ability Assessment. Math ability was assessed from the mathematical
reasoning and the numerical operations tests in a standardized battery (the
Wechsler Individual Achievement Test-II UK) (94). The mathematical rea-
soning test is composed of math problems requiring participants to create a

mental model of the problem, extract relevant information, and then select
and execute the appropriate operation (95). However, the numerical oper-
ation test is composed of written arithmetic problems, which require the
implementation of arithmetic procedures. We calculated the proportion of
correct responses in each math test for each participant. Note that the same
results are obtained for the raw scores, as the proportion of correct re-
sponses is based on dividing the raw scores by the number of an overall fixed
number of items in each test.

Math Anxiety Assessment. Math anxiety was assessed with the single-item
math anxiety (SIMA) scale (96), in which higher scores indicate higher levels
of math-related anxiety.

General Cognitive Ability. We measured general cognitive abilities using the
raw scores matrix reasoning subtest of theWechsler Abbreviated Intelligence
Scale (97).

Statistical Analyses. To calculate the differences in math ability and math
anxiety between the math and nonmath groups, we performed an indepen-
dent sample t test. For effect size, we used Cohen’s d based on the formula
(Mean1 − Mean2)/sqrt((SD1^2 + SD2^2)/2). To classify the math vs. nonmath
groups, we also executed a binary logistic regression. For an effect size in this
statistical analysis, we used standardized regression (β) coefficients. We also
report the corresponding exponentiation of the partially standardized (pβ)
coefficient, which is an odds ratio and is easier to interpret than the stan-
dardized regression (β) coefficient, which is in log-odds units. We also exam-
ined the equality of variances between the math and nonmath groups using
the Levene’s test for equality of variances; the variance did not differ between
the math and nonmath groups in A levels [MFG GABA F(81) = 0.005, P = 0.94;
MFG glutamate F(83) = 0.0001, P = 0.99; IPS GABA F(83) = 0.298, P = 0.59; IPS
glutamate F(82) = 1.051, P = 0.31].

Data Availability. Anonymized RAW imaging files, behavioral scores data
have been deposited in XNAT Central (https://central.xnat.org/data/projects/
PN21).
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